4.8 Review

Cross-Coupling Reaction of Alkyl Halides with Grignard Reagents Catalyzed by Ni, Pd, or Cu Complexes with π-Carbon Ligand(s)

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 41, 期 11, 页码 1545-1554

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar800138a

关键词

-

资金

  1. JSPS COE
  2. Ministry of Education, Culture, Sports, Science and Technology of Japan
  3. Asahi Glass foundation
  4. Sumitomo foundation
  5. Mitsubishi Chemical Corporation Fund

向作者/读者索取更多资源

Transition metal-catalyzed cross-coupling reactions of organic halides and pseudo-halides containing a C-X bond (X = 1, Br, Cl, OTf, OTs, etc.) with organometallic reagents are among the most important transformations for carbon-carbon bond formation between a variety of sp, sp(2), and sp(3)-hybridized carbon atoms. In particular, researchers have widely employed Ni- and Pd-catalyzed cross-coupling to synthesize complex organic structures from readily available components. The catalytic cycle of this process comprises oxidative addition, transmetalation, and reductive elimination steps. In these reactions, various organometallic reagents could bear a variety of R groups (alkyl, vinyl, aryl, or allyl), but the coupling partner has been primarily limited to sp and sp(2) carbon compounds: alkynes, alkenes, and arenes. With alkyl coupling partners, these reactions typically run into two problems within the catalytic cycle. First, oxidative addition of alkyl halides to a metal catalyst is generally less efficient than that of aryl or alkenyl compounds. Second, the alkylmetal intermediates formed tend to undergo intramolecular P-hydrogen elimination. In this Account, we describe our efforts to overcome these problems for Ni and Pd chemistry. We have developed new catalytic systems that do not involve M(0) species but proceed via an anionic complex as the key intermediate. For example, we developed a unique cross-coupling reaction of alkyl halides with organomagnesium or organozinc reagents catalyzed by using a 1,3-butadiene as the additive. This reaction follows a new catalytic pathway: the Ni or Pd catalyst reacts first with R-MgX to form an anionic complex, which then reacts with alkyl halides. Bis-dienes were also effective additives for the Ni-catalyzed cross-coupling reaction of organozinc reagents with alkyl halides. This catalytic system tolerates a wide variety of functional groups, including nitriles, ketones, amides, and esters. In addition, we have extended the utility of Cu-catalyzed cross-coupling reactions. With 1-phenylpropyne as an additive, Cu-catalyzed reactions of alkyl chlorides, fluorides, and mesylates with Grignard reagents proceed efficiently. These new catalytic reactions use pi-carbon ligands such as pi-allyl units or alkynes instead of heteroatom ligands such as phosphines or amines. Overall, these reactions provide new methodology for introducing alkyl moieties into organic molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据