4.6 Article

Reduced Retinal Neovascularization, Vascular Permeability, and Apoptosis in Ischemic Retinopathy in the Absence of Prolyl Hydroxylase-1 Due to the Prevention of Hyperoxia-Induced Vascular Obliteration

期刊

INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE
卷 52, 期 10, 页码 7565-7573

出版社

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/iovs.11-8002

关键词

-

资金

  1. NIH from National Eye Institute [R01 EY017164]
  2. Wilmer Eye Institute
  3. NIH [P30EY1765]

向作者/读者索取更多资源

PURPOSE. Prolyl hydroxylases (PHDs) are oxygen sensors that stabilize hypoxia-inducible factors (HIFs) to induce proinflammatory, vasopermeability, and proapoptotic factors. These may be potential targets to reduce the complications of ischemic retinopathies. METHODS. Oxygen-induced ischemic retinopathy (OIR) was generated as a model for retinopathy of prematurity (ROP) by placing 7-day-old mice in 75% oxygen for 5 days and returning them to the relative hypoxia of room air for 5 days. Neovascularization (NV) and avascular areas were assessed on retinal flat-mounts by image analysis. Blood-retinal barrier breakdown was assessed using (3)H-mannitol as a tracer. Apoptosis was detected with TUNEL staining. HIF-1 alpha and VEGF were quantified using Western blot analysis and ELISA. RESULTS. PHD1-deficient mice demonstrated reduced hyperoxia-associated vascular obliteration during oxygen-induced ischemic retinopathy. This was associated with subsequent reduced avascularity, vascular leakage, and pathologic NV during the hypoxic phase, which could be accounted for by a reduced expression of HIF-1 alpha and VEGF. Apoptosis in the retina was also reduced in PHD1-depleted mice after 2 days in hyperoxia. CONCLUSIONS. PHD1 deficiency is associated with a reduction of ischemia-induced retinal NV. The regulatory mechanism in this model appears to be: PHD1 depletion prevents HIF-1 alpha degradation in hyperoxia, which induces VEGF, thus preventing hyperoxia-related vessel loss. Without a vessel deficiency, there would not be relative hypoxia when the mice are returned to room air and there would be no need to initiate angiogenesis signaling. Blocking PHD1 may be beneficial for ischemic retinopathies and inflammatory and neurodegenerative disorders. (Invest Ophthalmol Vis Sci. 2011;52:7565-7573) DOI:10.1167/iovs.11-8002

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据