3.8 Proceedings Paper

Orientation Estimation of Anatomical Structures in Medical Images for Object Recognition

期刊

出版社

SPIE-INT SOC OPTICAL ENGINEERING
DOI: 10.1117/12.878184

关键词

Anatomy Segmentation; Object Recognition; Hermitian Matrices; Non-Euclidean metrics; Multiple Object Recognition

向作者/读者索取更多资源

Recognition of anatomical structures is an important step in model based medical image segmentation. It provides pose estimation of objects and information about where roughly the objects are in the image and distinguishing them from other object-like entities. In,(1) we presented a general method of model-based multiobject recognition to assist in segmentation (delineation) tasks. It exploits the pose relationship that can be encoded, via the concept of ball scale (b-scale), between the binary training objects and their associated grey images. The goal was to place the model, in a single shot, close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. Unlike position and scale parameters, we observe that orientation parameters require more attention when estimating the pose of the model as even small differences in orientation parameters can lead to inappropriate recognition. Motivated from the non-Euclidean nature of the pose information, we propose in this paper the use of non-Euclidean metrics to estimate orientation of the anatomical structures for more accurate recognition and segmentation. We statistically analyze and evaluate the following metrics for orientation estimation: Euclidean, Log-Euclidean, Root-Euclidean, Procrustes Size-and-Shape, and mean Hermitian metrics. The results show that mean Hermitian and Cholesky decomposition metrics provide more accurate orientation estimates than other Euclidean and non-Euclidean metrics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据