4.7 Article

Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 11, 期 13, 页码 6593-6605

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-11-6593-2011

关键词

-

资金

  1. Chinese Academy of Sciences [KJCX2-YW-N24, KZCX2-YW-Q02-03, KZCX2-YW-205]
  2. National Natural Science Foundation of China [40925016, 40830101, 21077109, 41005070]

向作者/读者索取更多资源

The heterogeneous oxidation of sulfur dioxide by ozone on CaCO3 was studied as a function of temperature (230 to 298 K) at ambient pressure. Oxidation reactions were followed in real time using diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) to obtain kinetic and mechanistic data. From the analysis of the spectral features, the formation of sulfate was identified on the surface in the presence of O-3 and SO2 at different temperatures from 230 to 298 K. The results showed that the heterogeneous oxidation and the rate of sulfate formation were sensitive to temperature. An interesting stage-transition region was observed at temperatures ranging from 230 to 257 K, but it became ambiguous gradually above 257 K. The reactive uptake coefficients at different temperatures from 230 to 298K were acquired for the first time, which can be used directly in atmospheric chemistry modeling studies to predict the formation of secondary sulfate aerosol in the troposphere. Furthermore, the rate of sulfate formation had a turning point at about 250 K. The sulfate concentration at 250 K was about twice as large as that at 298 K. The rate of sulfate formation increased with decreasing temperature at temperatures above 250 K, while there is a contrary temperature effect at temperatures below 250 K. The activation energy for heterogeneous oxidation at temperatures from 245 K to 230 K was determined to be 14.63 +/- 0.20 kJ mol(-1). A mechanism for the temperature dependence was proposed and the atmospheric implications were discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据