4.8 Article

Role of Mn Content on the Electrochemical Properties of Nickel-Rich Layered LiNi0.8-xCo0.1Mn0.1+xO2 (0.0 ≤ x ≤ 0.08) Cathodes for Lithium-Ion Batteries

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 7, 期 12, 页码 6926-6934

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b00788

关键词

lithium-ion batteries; manganese content; layered oxide cathodes; nickel-rich oxides; cycling stability; thermal stability

资金

  1. Office of Vehicle Technologies of the U.S. Department of Energy [DE-EE0006447]

向作者/读者索取更多资源

Ni-rich layered oxides (Ni content >60%) are promising cathode candidates for Li-ion batteries because of their high discharge capacity, high energy density, and low cost. However, fast capacity fading, poor thermal stability, and sensitivity to the ambient moisture still plague their mass application. In this work, we systematically investigate the effects of Mn content on the structure, morphology, electrochemical performance, and thermal stability of the Ni-rich cathode materials LiNi0.8-xCo0.1Mn0.1+xO2 (0.0 = x = 0.08). It is demonstrated that with the increase in Mn content and decrease in Ni content, the cycling stability of LiNi(0.8-x)Co(0.1)Mn(0.1+)xO(2) to a cutoff charge voltage of 4.5 V is significantly improved. The high-Mn-content electrode LiNi0.72Co0.10Mn0.18O2 shows a capacity retention of 85.7% after 100 cycles at a 0.2 C rate at room temperature, much higher than those of the lower Mn-content samples LiNi0.80Co0.10Mn0.10O2 (64.0%) and LiNi0.76Co0.10Mn0.14O2 (72.9%). The improved capacity retention of the high-Mn-content electrode LiNi0.72Co0.10Mn0.18O2 is due to the stabilization of the electrode/electrolyte interface, as evidenced by the lower solid-electrolyte interphase (SEI) resistance and charge-transfer resistance. Furthermore, with the increase in Mn content and decrease in Ni content, the thermal stability of the Ni-rich cathode is also remarkably enhanced.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据