4.5 Article

GLUT1 enhances mTOR activity independently of TSC2 and AMPK

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
卷 301, 期 3, 页码 F588-F596

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00472.2010

关键词

mesangial cells; diabetes; mTORC1

资金

  1. National Institutes of Health (NIH) [T32-GM008322, U01 DK076139, R01 HL065567]
  2. Dialysis Clinics Inc. [C-2957, C-3000]
  3. Michigan Diabetes Research and Training Center Cell and Molecular Biology Core NIH [P60 DK020572]

向作者/读者索取更多资源

Buller CL, Heilig CW, Brosius FC 3rd. GLUT1 enhances mTOR activity independently of TSC2 and AMPK. Am J Physiol Renal Physiol 301: F588-F596, 2011. First published May 25, 2011; doi:10.1152/ajprenal.00472.2010.-Enhanced GLUT1 expression in mesangial cells plays an important role in the development of diabetic nephropathy by stimulating signaling through several pathways resulting in increased glomerular matrix accumulation. Similarly, enhanced mammalian target of rapamycin (mTOR) activation has been implicated in mesangial matrix expansion and glomerular hypertrophy in diabetes. We sought to examine whether enhanced GLUT1 expression increased mTOR activity and, if so, to identify the mechanism. We found that levels of GLUT1 expression and mTOR activation, as evidenced by S6 kinase (S6K) and 4E-BP-1 phosphorylation, changed in tandem in cell lines exposed to elevated levels of extracellular glucose. We then showed that increased GLUT1 expression enhanced S6K phosphorylation by 1.7- to 2.9-fold in cultured mesangial cells and in glomeruli from GLUT1 transgenic mice. Treatment with the mTOR inhibitor, rapamycin, eliminated the GLUT1 effect on S6K phosphorylation. In cells lacking functional tuberous sclerosis complex (TSC) 2, GLUT1 effects on mTOR activity persisted, indicating that GLUT1 effects were not mediated by TSC. Similarly, AMP kinase activity was not altered by enhanced GLUT1 expression. Conversely, enhanced GLUT1 expression led to a 2.4-fold increase in binding of mTOR to its activator, Rheb, and a commensurate 2.1-fold decrease in binding of Rheb to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) consistent with mediation of GLUT1 effects by a metabolic effect on GAPDH. Thus, GLUT1 expression appears to augment mesangial cell growth and matrix protein accumulation via effects on glycolysis and decreased GAPDH interaction with Rheb.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据