3.8 Article

A discrete-event simulation approach to predict power consumption in machining processes

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11740-011-0333-y

关键词

Machining; Simulation; Power consumption

资金

  1. German Research Foundation (DFG)

向作者/读者索取更多资源

Whereas in the past the sustainable use of resources and the reduction of waste have mainly been looked at from an ecological point of view, resource efficiency recently becomes more and more an issue of cost saving as well. In manufacturing engineering especially the reduction of power consumption of machine tools and production facilities is in the focus of industry, politics and research. Before power consumption in machining processes can be reduced it is necessary to quantify the amount of energy needed, to identify energy consumers and to determine the available degrees of freedom for an optimization. Simulation can be an adequate alternative to the measurement of power consumption during machining operation. However, many of the available simulation methods are not suitable for this task. This paper describes an approach based on the discrete-event simulation, which is known mainly from the simulation of logistical systems. It has been adapted to model machining operations and to generate workpiece-specific power consumption profiles and energy footprints. Two-axis turning in a CNC machining centre is shown exemplary. The aim is to provide a basis for further applications such as the simulation, comparison and optimization of power consumption in process chains and production systems in combination with logistical models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据