4.7 Review

Mechanical and Systems Biology of Cancer

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.csbj.2018.07.002

关键词

Mechanobiology; Cancer; Mathematical biology; Computational modelling; Signaling; Cytoskeleton; Focal adhesions; Mechanotransduction

资金

  1. Yale University
  2. Stand Up to Cancer Campaign for Cancer Research UK via a Programme Foundation Award [C37275/A20146]

向作者/读者索取更多资源

Mechanics and biochemical signaling are both often deregulated in cancer, leading to increased cell invasiveness, proliferation, and survival. The dynamics and interactions of cytoskeletal components control basic mechanical properties, such as cell tension, stiffness, and engagement with the extracellular environment, which can lead to extracellular matrix remodeling. Intracellular mechanics can alter signaling and transcription factors, impacting cell decision making. Additionally, signaling from soluble and mechanical factors in the extracellular environment, such as substrate stiffness and ligand density, can modulate cytoskeletal dynamics. Computational models closely integrated with experimental support, incorporating cancer-specific parameters, can provide quantitative assessments and serve as predictive tools toward dissecting the feedback between signaling and mechanics and across multiple scales and domains in tumor progression. (c) 2018 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据