4.7 Article

A two-dimensional CaSi monolayer with quasi-planar pentacoordinate silicon

期刊

NANOSCALE HORIZONS
卷 3, 期 3, 页码 327-334

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nh00091j

关键词

-

资金

  1. NASA [17-EPSCoRProp-0032]
  2. NSF-CREST Center for Innovation, Research and Education in Environmental Nanotechnology (CIRE2N) Grant [HRD-1736093]
  3. National Natural Science Foundation of China [21522305, 21403115]
  4. NSF of Jiangsu Province of China [BK20150045]
  5. Innovation Project in Jiangsu Province [KYZZ16_0454]

向作者/读者索取更多资源

The prediction of new materials with peculiar topological properties is always desirable to achieve new properties and applications. In this work, by means of density functional theory computations, we extend the rule-breaking chemical bonding of planar pentacoordinate silicon (ppSi) into a periodic system: a C-2v Ca4Si22- molecular building block containing a ppSi center is identified first, followed by the construction of an infinite CaSi monolayer, which is essentially a two-dimensional (2D) network of the Ca4Si2 motif. The moderate cohesive energy, absence of imaginary phonon modes, and good resistance to high temperature indicate that the CaSi monolayer is a thermodynamically and kinetically stable structure. In particular, a global minimum search reveals that the ppSi-containing CaSi monolayer is the lowest-energy structure in 2D space, indicating its great promise for experimental realization. The CaSi monolayer is a natural semiconductor with an indirect band gap of 0.5 eV, and it has rather strong optical absorption in the visible region of the solar spectrum. More interestingly, the unique atomic configuration endows the CaSi monolayer with an unusually negative Poisson's ratio. The rule-breaking geometric structure together with its exceptional properties makes the CaSi monolayer quite a promising candidate for applications in electronics, optoelectronics, and mechanics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据