4.8 Article

Low-input and multiplexed microfluidic assay reveals epigenomic variation across cerebellum and prefrontal cortex

期刊

SCIENCE ADVANCES
卷 4, 期 4, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aar8187

关键词

-

资金

  1. U.S. NIH [EB017235, HG009256, HG008623, CA214176, HG007352]
  2. Center for Engineered Health of Virginia Tech Institute for Critical Technology and Applied Science

向作者/读者索取更多资源

Extensive effort is under way to survey the epigenomic landscape of primary ex vivo tissues to establish normal reference data and to discern variation associated with disease. The low abundance of some tissue types and the isolation procedure required to generate a homogenous cell population often yield a small quantity of cells for examination. This difficulty is further compounded by the need to profile a myriad of epigenetic marks. Thus, technologies that permit both ultralow input and high throughput are desired. We demonstrate a simple microfluidic technology, SurfaceChIP-seq, for profiling genome-wide histone modifications using as few as 30 to 100 cells per assay and with up to eight assays running in parallel. We applied the technology to profile epigenomes using nuclei isolated from prefrontal cortex and cerebellum of mouse brain. Our cell type-specific data revealed that neuronal and glial fractions exhibited profound epigenomic differences across the two functionally distinct brain regions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据