4.8 Article

Molecular engineered conjugated polymer with high thermal conductivity

期刊

SCIENCE ADVANCES
卷 4, 期 3, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aar3031

关键词

-

资金

  1. U.S. Department of Energy (DOE)-Basic Energy Sciences [DE-FG02-02ER45977]
  2. Massachusetts Institute of Technology (MIT) Deshpande Center
  3. DOE Office of Science [DE-AC02-06CH11357]

向作者/读者索取更多资源

Traditional polymers are both electrically and thermally insulating. The development of electrically conductive polymers has led to novel applications such as flexible displays, solar cells, and wearable biosensors. As in the case of electrically conductive polymers, the development of polymers with high thermal conductivity would open up a range of applications in next-generation electronic, optoelectronic, and energy devices. Current research has so far been limited to engineering polymers either by strong intramolecular interactions, which enable efficient phonon transport along the polymer chains, or by strong intermolecular interactions, which enable efficient phonon transport between the polymer chains. However, it has not been possible until now to engineer both interactions simultaneously. We report the first realization of high thermal conductivity in the thin film of a conjugated polymer, poly(3-hexylthiophene), via bottom-up oxidative chemical vapor deposition (oCVD), taking advantage of both strong C=C covalent bonding along the extended polymer chain and strong pi-pi stacking noncovalent interactions between chains. We confirm the presence of both types of interactions by systematic structural characterization, achieving a near-room temperature thermal conductivity of 2.2 W/m.K, which is 10 times higher than that of conventional polymers. With the solvent-free oCVD technique, it is now possible to grow polymer films conformally on a variety of substrates as lightweight, flexible heat conductors that are also electrically insulating and resistant to corrosion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据