4.8 Article

In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials

期刊

SCIENCE ADVANCES
卷 4, 期 1, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aao1175

关键词

-

资金

  1. Dutch Arthritis Foundation [12-2-411, LLP-25]
  2. European Research Council [ERC DDD: 740479, ERC PhysBoil: 267166]
  3. Dutch Organization for Scientific Research [Spinoza: SPI 69-11]

向作者/读者索取更多资源

Microfluidic chips provide unparalleled control over droplets and jets, which have advanced all natural sciences. However, microfluidic applications could be vastly expanded by increasing the per-channel throughput and directly exploiting the output of chips for rapid additive manufacturing. We unlock these features with in-air microfluidics, a new chip-free platform to manipulate microscale liquid streams in the air. By controlling the composition and in-air impact of liquid microjets by surface tension-driven encapsulation, we fabricate mono-disperse emulsions, particles, and fibers with diameters of 20 to 300 mm at rates that are 10 to 100 times higher than chip-based droplet microfluidics. Furthermore, in-air microfluidics uniquely enables module-based production of three-dimensional (3D) multiscale (bio) materials in one step because droplets are partially solidified inflight and can immediately be printed onto a substrate. In-air microfluidics is cytocompatible, as demonstrated by additive manufacturing of 3D modular constructs with tailored microenvironments for multiple cell types. Its in-line control, high throughput and resolution, and cytocompatibility make in-air microfluidics a versatile platform technology for science, industry, and health care.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据