4.8 Article

Plasmon-Mediated Electron Injection from Au Nanorods into MoS2: Traditional versus Photoexcitation Mechanism

期刊

CHEM
卷 4, 期 5, 页码 1112-1127

出版社

CELL PRESS
DOI: 10.1016/j.chempr.2018.02.025

关键词

-

资金

  1. National Science Foundation of China [21573022, 21520102005, 21688102, 21590801, 21421003]
  2. Recruitment Program of Global Youth Experts of China
  3. Fundamental Research Funds for the Central Universities [2017EYT-09]
  4. Beijing Normal University Startup Package
  5. US National Science Foundation [CHE-1565704]
  6. 1000 Talents Plan

向作者/读者索取更多资源

Using nonadiabatic molecular dynamics simulations combined with time domain density functional theory, we show that electron injection from gold nanorods into MoS2 by the traditional mechanism is still faster than energy relaxation causing charge recombination. Plasmon-like excitations decay into free-electron states within 30 fs after photoexcitation of gold nanorods. Electron transfer follows within less than 100 fs, whereas energy relaxation requires 200 fs. Surface plasmons couple to low-frequency phonons of gold, and free charges also couple to higher-frequency phonons of gold and MoS2. The contribution of the charge-transfer photoexcitation mechanism to plasmon-driven charge separation depends strongly on the type of donor-acceptor interaction, e.g., chemical versus van der Waals, and more weakly on contact area and system geometry. The simulation generates a detailed time-domain atomistic description of the interfacial plasmon-driven charge separation and relaxation that are fundamental to many applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据