4.6 Article

Phase-Field Simulations of Lithium Dendrite Growth with Open-Source Software

期刊

ACS ENERGY LETTERS
卷 3, 期 7, 页码 1737-1743

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.8b01009

关键词

-

资金

  1. U.S. Department of Energy, Energy Efficiency and Renewable Energy Vehicle Technologies Office [DE-EE0007810]

向作者/读者索取更多资源

Dendrite growth is a long-standing challenge that has limited the applications of rechargeable lithium metal electrodes. Here, we have developed a grand potential-based nonlinear phase-field model to study the electrodeposition of lithium as relevant for a lithium metal anode, using open-source software package MOOSE. The dynamic morphological evolution under a large/small overpotential is studied in two dimensions, revealing important dendrite growth/stable deposition patterns. The corresponding temporal spatial distributions of ion concentration, overpotential, and driving force are studied, which demonstrate an intimate, dynamic competition between ion transport and electrochemical reactions, resulting in vastly different growth patterns. On the basis of the understanding from this model, we propose a compositionally graded electrolyte with higher local ion concentration as a way to potentially suppress dendrite formation. Given the importance of morphological evolution for lithium metal electrodes, widespread applications of phase-field models have been limited in part due to in-house or proprietary software. In order to spur growth of this field, we make all files available to enable future studies to study the many unsolved aspects related to morphology evolution of lithium metal electrodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据