4.6 Article

Bifunctional 2D Superlattice Electrocatalysts of Layered Double Hydroxide-Transition Metal Dichalcogenide Active for Overall Water Splitting

期刊

ACS ENERGY LETTERS
卷 3, 期 4, 页码 952-960

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.8b00134

关键词

-

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MSIP) [NRF-2017R1A2A1A17069463]
  2. Korea government (MSIT) [NRF-2017R1A5A1015365]
  3. MOST
  4. POSTECH
  5. National Research Foundation of Korea [10Z20130011056] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Bifunctional 2D superlattice electrocatalysts of alternating layered double hydroxide (LDH)-transition metal dichalcogenide (TMD) heterolayers were synthesized by inter stratification of the exfoliated nanosheets. Density functional theory calculations predict an increased inter-facial charge transfer between interstratified LDH and TMD nanosheets, which would lead to enhanced electrocatalytic activity. The electrostatically driven self-assembly of oppositely charged 2D building blocks, i.e., exfoliated Ni-Al-LDH/Ni-Fe-LDH and MoS, nanosheets, yields mesoporous heterolayered Ni-Al-LDH-MoS2/Ni-Fe-LDH-MoS2 superlattices. The synthesized superlattices show improved electro-catalytic activity with enhanced durability for oxygen and hydrogen evolution reactions and water splitting. The interstratification improves the chemical stability of LDH in acidic media, thus expanding its possible applications. The high electrocatalytic activity of the superlattices may be attributed to an enhanced affinity for OH-/H+, improved electrical conduction and charge transfer, and the increase of active sites. This study indicates that the formation of superlattices via self-assembly of 2D nanosheets provides useful methodology to explore high-performance electrocatalysts with improved stability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据