4.1 Article

Partially threaded headless screw may benefit adequate interfragmentary compression and reduced driving torque for small bone fixation

期刊

JOURNAL OF ORTHOPAEDIC SURGERY
卷 26, 期 1, 页码 -

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/2309499018760130

关键词

biomechanical testing; driving torque; headless compression screw; small bone fracture

向作者/读者索取更多资源

Headless compression screws (HCSs) are commonly used to fixate small bones and articular fractures. Understanding the biomechanical efficacy of different HCS designs can help surgeons make proper interfragmentary compression when a specific implant is chosen. HCSs with three different central shaft designs (unthreaded, fully threaded, and partially threaded) were studied: the Herbert-Whipple, Mini-Acutrak 2, and headless reduction (HLR). Polyurethane foam blocks were machined with a simulated fracture gap of 0.5 mm and set onto a custom-made jig to simultaneously measure compression force and driving torque during screw insertion. The maximal achievable compression forces and driving torques recorded were 47.4 +/- 0.9 N and 145.11 +/- 1.65 N mm for the HLR, 50.98 +/- 1.29 N and 152.62 +/- 2.83 N mm for the Mini-Acutrak 2, and 19.33 +/- 1.0 N and 33.4 +/- 2.2 N mm for the Herbert-Whipple. Overall, the compression force of the Mini-Acutrak 2 and HLR increased with the torque. Unlike the other screws, the Herbert-Whipple's driving torque increased while the compression force decreased after peak compression force was achieved. The partially threaded shaft design (HLR) demonstrated equivalent biomechanical advantage with the Mini-Acutrak 2 in interfragmentary compression. The HCSs with cone-shaped proximal ends (HLR and Mini-Acutrak 2) maintained their compression force during over-fastening, whereas the unthreaded central shaft of the Herbert-Whipple screw caused it to lose compression force.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据