4.5 Article

Epoxyeicosatrienoic Acids Attenuate Reactive Oxygen Species Level, Mitochondrial Dysfunction, Caspase Activation, and Apoptosis in Carcinoma Cells Treated with Arsenic Trioxide

期刊

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.111.180505

关键词

-

资金

  1. China Natural Science Foundation Committee [30700377, 30770882, 30430320]
  2. 973 Project [2007 CB512004]
  3. National Institutes of Health National Institute of Environmental Health Sciences [Z01-ES025034]

向作者/读者索取更多资源

Epoxyeicosatrienoic acids (EETs) and the cytochrome P450 epoxygenase CYP2J2 promote tumorogenesis in vivo and in vitro via direct stimulation of tumor cell growth and inhibition of tumor cell apoptosis. Herein, we describe a novel mechanism of inhibition of tumor cell apoptosis by EETs. In Tca-8113 cancer cells, the antileukemia drug arsenic trioxide (ATO) led to the generation of reactive oxygen species (ROS), impaired mitochondrial function, and induced apoptosis. 11,12-EET pretreatment increased expression of the antioxidant enzymes superoxide dismutase and catalase and inhibited ATO-induced apoptosis. 11,12-EET also prevented the ATO-induced activation of p38 mitogen-activated protein kinase, c-Jun NH(2)-terminal kinase, caspase-3, and caspase-9. Therefore, 11,12-EET-pretreatment attenuated the ROS generation, loss of mitochondrial function, and caspase activation observed after ATO treatment. Moreover, the CYP2J2-specific inhibitor compound 26 enhanced arsenic cytotoxicity to a clinically relevant concentration of ATO (1-2 mu M). Both the thiol-containing antioxidant, N-acetyl-cysteine, and 11,12-EET reversed the synergistic effect of the two agents. Taken together, these data indicate that 11,12-EET inhibits apoptosis induced by ATO through a mechanism that involves induction of antioxidant proteins and attenuation of ROS-mediated mitochondrial dysfunction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据