4.5 Article

Jovian Auroral Ion Precipitation: Field-Aligned Currents and Ultraviolet Emissions

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
卷 123, 期 3, 页码 2257-2273

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2017JA024872

关键词

Jupiter; magnetosphere; ionosphere interactions; Juno; aurora; ion precipitation

资金

  1. University of Kansas by NASA grant [NNX14AG79G]
  2. NASA [NNX14AG79G, 683988] Funding Source: Federal RePORTER

向作者/读者索取更多资源

A model is described for the transport of magnetospheric oxygen ions with low charge state and energies up to several MeV/nucleon (MeV/u) as they precipitate into Jupiter's polar atmosphere. A revised and updated hybrid Monte Carlo model originally developed by Ozak et al. (2010, https://doi.org/10.1029/2010JA015635) is used to model the Jovian X-ray aurora. The current model uses a wide range of incident oxygen ion energies (10 keV/u to 5 MeV/u) and the most up-to-date collision cross sections. In addition, the effects of the secondary electrons generated from the heavy ion precipitation are included using a two-stream transport model that computes the secondary electron fluxes and their escape from the atmosphere. The model also determines H-2 Lyman-Werner band emission intensities, including a predicted spectrum and the associated color ratio. Implications of the new model results for interpretation of data from National Aeronautics and Space Administration's Juno mission are discussed. In particular, the model predicts that for a 2 MeV/u oxygen ion energy input of 10 mW/m(2): (1) escaping electrons are produced with an energy range from 1 eV to 4 keV, which is a smaller range than previous models by Ozak et al. (2013, https://doi.org/10.1002/2013GL50812) predicted, (2) H-2 band emission rates of 75 kR are generated, similar to previous estimates, and (3) a newly calculated Lyman and Werner band color ratio of 10 is expected. The color ratios are put into a context of various methane number density distributions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据