4.6 Article

Robust Thin Film Surface with a Selective Antibacterial Property Enabled via a Cross-Linked Ionic Polymer Coating for Infection-Resistant Medical Applications

期刊

ACS BIOMATERIALS SCIENCE & ENGINEERING
卷 4, 期 7, 页码 2614-2622

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsbiomaterials.8b00241

关键词

antibacterial coating; initiated chemical vapor deposition (iCVD); cross-linking; ionic polymer; device-associated infections

资金

  1. Wearable Platform Materials Technology Center (WMC) - National Research Foundation of Korea (NRF) Grant of the Korean Government (MSIP) [2016R1A5A1009926]
  2. National Research Foundation of Korea (NRF) - Korea government (MSIP) [2017R1A2B3007806]

向作者/读者索取更多资源

Fabrication of new antibacterial surfaces has become a primary strategy for preventing device-associated infections (DAIs). Although considerable progress has recently been made in reducing DAIs, current antibacterial coating methods are technically complex and do not allow selective bacterial killing. Here, we propose novel anti-infective surfaces made of a cross-linked ionic polymer film that achieve selective bacteria killing while simultaneously favoring the survival of mammalian cells. A one-step polymerization process known as initiated chemical vapor deposition was used to generate a cross-linked ionic polymer film from 4-vinylbenzyl chloride and 2-(dimethylamino) ethyl methacrylate monomers in the vapor phase. In particular, the deposition process produced a polymer network with quaternary ammonium cross-linking sites, which provided the surface with an ionic moiety with an excellent antibacterial contact-killing property. This method confers substrate compatibility, which enables various materials to be coated with ionic polymer films for use in medical implants. Moreover, the ionic polymer- deposited surfaces supported the healthy growth of mammalian cells while selectively inhibiting bacterial growth in coculture models without any detectable cytotoxicity. Thus, the cross-linked ionic polymer-based antibacterial surface developed in this study can serve as an ideal platform for biomedical applications that require a highly sterile environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据