4.5 Article

Attribution of Local Temperature Response to Deforestation

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES
卷 123, 期 5, 页码 1572-1587

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2018JG004401

关键词

land use and land cover change; land surface temperature; attribution; deforestation

资金

  1. National Natural Science Foundation of China [41671398]
  2. International Program for PhD Candidates at Sun Yat-Sen University

向作者/读者索取更多资源

Land use and land cover change such as deforestation can directly induce changes in land surface temperature (LST). Using observational data from four paired eddy covariance sites, we attribute changes in LST induced by deforestation to changes in radiation, aerodynamic resistance, the Bowen ratio or surface resistance, and heat storage using two different methods: the intrinsic biophysical mechanism (IBM) method and the two-resistance mechanism method. The two models are first optimized to reduce the root-mean-square error of the simulated daily LST change by using daily-averaged inputs and a weighted average approach for computing the sensitivities. Both methods indicate that the daytime warming effect of deforestation is mostly induced by changes in aerodynamic resistance as the surface becomes smoother after deforestation, and the nighttime cooling effect of deforestation is controlled by changes in aerodynamic resistance, surface resistance, radiation, and heat storage. Both methods also indicate that changes in atmospheric temperature have a large impact on LST and need to be included in the LST attribution. However, there are significant differences between the two methods. The IBM method tends to overestimate the contribution of aerodynamic resistance due to the assumption that aerodynamic resistance and the Bowen ratio are independent. Additionally, the IBM method underestimates the contributions of radiation and heat storage during the daytime but overestimates them at night. By highlighting the similarity and dissimilarity between the two methods, this study suggests that acceptable agreement between observed and modeled LST change is the prerequisite for attribution but does not guarantee correct attribution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据