4.5 Article

Critical Zone Structure Under a Granite Ridge Inferred From Drilling and Three-Dimensional Seismic Refraction Data

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE
卷 123, 期 6, 页码 1317-1343

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2017JF004280

关键词

critical zone; geophysics; imaging; weathering; granite

资金

  1. NSFEPS [1208909]
  2. U.S. Army Research Office [W911NF-14-1-0037]
  3. NSF [EAR-1331940]

向作者/读者索取更多资源

Observing the critical zone (CZ) below the top few meters of readily excavated soil is challenging yet crucial to understanding Earth surface processes. Near-surface geophysical methods can overcome this challenge by imaging the CZ in three dimensions (3-D) over hundreds of meters, thus revealing lateral heterogeneity in subsurface properties across scales relevant to understanding hillslope erosion, weathering, and biogeochemical cycling. We imaged the CZ under a soil-mantled ridge developed in granitic terrain of the Laramie Range, Wyoming, using data from five boreholes and a 3-D volume (970 by 600 by 80m) of seismic velocities generated by ordinary kriging of 25 two-dimensional seismic refraction transects. The observed CZ structure under the ridge broadly matches predictions of two recently proposed hypotheses: the uppermost surface of weathered bedrock is consistent with subsurface weathering driven by bedrock drainage and subsurface topography defining the top of unweathered protolith is consistent with fracturing predicted from topographic and regional stresses. In contrast, differences in slope aspect along the ridge are too subtle to explain observed variations in regolith structure. Our observations suggest that multiple processes, each of which may dominate at different depths, work in concert to regulate deep CZ structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据