4.7 Article

Progestin and AdipoQ Receptor 3 Upregulates Fibronectin and Intercellular Adhesion Molecule-1 in Glomerular Mesangial Cells via Activating NF-kappa B Signaling Pathway Under High Glucose Conditions

期刊

FRONTIERS IN ENDOCRINOLOGY
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fendo.2018.00275

关键词

progestin and adipoQ receptor 3; diabetic nephropathy; inflammatory fibrosis; NF-kappa B; inhibitor of nuclear factor kappa B kinase beta

资金

  1. National Natural Science Foundation of China [81373457, 81573477, 81770816]
  2. Natural Science Foundation Major Project of Guangdong Province [2017A030311036]

向作者/读者索取更多资源

Background: Progestin and adipoQ receptor 3 (PAQR3), is a Golgi-anchored membrane protein containing seven transmembrane helices. It has been demonstrated that PAQR3 mediates insulin resistance, glucose and lipid metabolism, and inflammation. In addition, kidney inflammatory fibrosis is an important pathological feature of diabetic nephropathy (DN). Therefore, we aimed to investigate the role of PAQR3 in diabetic kidney fibrosis as well as inflammation in DN. Object: The effect of PAQR3 on NF-kappa B signaling pathway, expressions of fibronectin (FN) and intercellular adhesion molecule-1 (ICAM-1) in glomerular mesangial cells (GMCs) cultured by high glucose (HG) were examined. Method: Diabetic mouse and rat models were induced by streptozotocin (STZ). GMCs were treated with HG and transfected with PAQR3 plasmids or small-interfering RNA targeting PAQR3 or NF-kappa B. The protein levels of FN and ICAM-1 were examined by Western blotting, and the transcriptional activity and DNA binding activity of NF-kappa B were measured by dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The interaction between PAQR3 and IKKp (inhibitor of nuclear factor kappa B kinase p) was analyzed by co-immunoprecipitation. Results: PAQR3 was increased in both STZ-induced diabetic models and HG-treated GMCs. PAQR3 overexpression further increased HG-induced FN and ICAM-1 upregulation. In contrast, silencing of PAGR3 suppressed the expressions of FN and ICAM-1. PAQR3 overexpression promoted the nuclear accumulation, DNA binding activity, and transcriptional activity of NF-kappa B. Mechanically, PAQR3 directly interacted with IKKp. The upregulation effect of PAQR3 overexpression on the expressions of FN and ICAM-1 was abolished by the treatment of NF-kappa B siRNA or PDTC (ammonium pyrrolidinedithiocarbamate) in HG-treated GMCs. Conclusion: PAQR3 promotes the expressions of FN and ICAM-1 via activating NF-kappa B signaling pathway. Mechanistically, PAQR3 activates NF-kappa B signaling pathway to mediate kidney inflammatory fibrosis through direct interaction with IKK beta in DN.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据