4.7 Article

PEGylated carbon dot/MnO2 nanohybrid: a new pH/H2O2-driven, turn-on cancer nanotheranostics

期刊

SCIENCE CHINA-MATERIALS
卷 61, 期 10, 页码 1325-1338

出版社

SCIENCE PRESS
DOI: 10.1007/s40843-018-9261-x

关键词

tumor microenvironment; photodynamic therapy; carbon dots; turn-on theranostics; manganese dioxide

资金

  1. National Natural Science Foundation of China [51472252, 51572269]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB17000000]

向作者/读者索取更多资源

The effect of tumor-targeted photodynamic therapy (PDT) was improved by designing nanotheranostics to promote oxygenation in a tumor microenvironment (TME) wherein hypoxia, acidosis, and the elevated levels of H2O2 are three main characteristics. In this study, a carbon dot (CD) PDT agent recently developed by our group was firstly applied as reducing agent to react with potassium permanganate for fabricating CDs/manganese dioxide (CDs/MnO2) composites, which were in turn modified with polyethylene glycol (PEG) to form water-soluble CDs/MnO2-PEG nanohybrids. In a normal physiological environment, the as-prepared nanohybrids exhibited quenched fluorescence, weak singlet oxygen generation, and low magnetic resonance imaging (MRI) signal. However, given the high sensitivity of MnO2 to the TME, the CDs/MnO2-PEG nanohybrids changed from an off to an on state with synchronously enhanced fluorescence, singlet oxygen generation, and MRI signal in the TME. In vitro and in vivo analyses have revealed that CDs/MnO2-PEG nanohybrids could be applied as TME-driven, turn-on nanotheranostics for the MR/fluorescence bimodal imaging-guided PDT of cancer. Moreover, complete clearance of CDs/MnO2-PEG nanohybrids from the body of mice was observed, indicating their low long-term toxicity and good biocompatibility. This work offers a new nanotheranostic candidate for modulating the unfavorable TME, particularly for the targeted PDT of cancer through precise positioning and oxygen generation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据