4.7 Article

Evolutionary design of nonuniform cellular structures with optimized Poisson's ratio distribution

期刊

MATERIALS & DESIGN
卷 141, 期 -, 页码 384-394

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2017.12.047

关键词

Nonuniform cellular structure; Poisson's ratio; Evolutionary algorithm; Re-entrant structure; Additive manufacturing

向作者/读者索取更多资源

For negative Poisson's ratio (NPR) cellular structures, most previous research focus on the design of unit cells, and then repeat the unit cell to construct uniform cellular structures. However, there is a disadvantage that these structures do not have much design freedom to achieve high-level functions, such as performing a desired deformation. As a solution, an evolutionary design method is proposed to develop nonuniform cellular structures. To conduct this method, the design domain is divided into finite unit cells with tunable Poisson's ratio (PR). With a given objective deformation, the value of each unit cell's PR is optimized using evolutionary algorithm (EA). In order to reduce the computational cost of the algorithm, discrete cosine transform (DCT) is applied to encode the structure for evolving. Considering the geometrical complexity of the optimized nonuniform cellular structures, additive manufacturing (AM) is chosen to build them physically. Both two-dimensional (2D) and three-dimensional (3D) design cases were developed and analyzed to validate the proposed method. The computational and experimental results showed good conformation with each other. Most importantly, this novel design method brings huge potential to NPR cellular structures with high-level functions and much wider applications. (C) 2017 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据