4.7 Article

Performance Analysis of Amplitude Modulation Schemes for Diffusion-Based Molecular Communication

期刊

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
卷 14, 期 10, 页码 5681-5691

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TWC.2015.2441067

关键词

Amplitude modulation; brownian motion; channel capacity; molecular communication; positive drift; symbol error probability (SEP)

向作者/读者索取更多资源

In this paper, we investigate modulation techniques for end-to-end communication between two nanomachines placed in a fluid medium. The information is encoded as the number of molecules transmitted leading to such schemes being aptly named as amplitude modulation schemes. The propagation of molecules obeys the laws of Brownian motion with a positive drift from the transmitter to the receiver nanomachine. The channel is characterized by two parameters of the fluid medium: the drift velocity and the diffusion coefficient. Assuming the molecules degrade over time, the life expectancy of the molecules also plays a significant role in such communication scenarios. We consider an M-ary modulation scheme and also propose an extended scheme, which is a slight variation of a binary modulation scheme. The received symbol is corrupted by interference from the previous symbols as well as other noise sources present in the medium. Considering maximum likelihood detection at the receiver, we derive analytical expressions for the end-to-end symbol error probability and the capacity for these modulation schemes. Numerical results bring out the impact of various parameters on the performance of the system. Our results show that these schemes offer a promising approach to set up molecular communication over diffusion-based channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据