4.7 Article

Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract

期刊

RESULTS IN PHYSICS
卷 9, 期 -, 页码 400-408

出版社

ELSEVIER
DOI: 10.1016/j.rinp.2018.02.049

关键词

Calophyllum tomentosum; AgNPs; Characterization; Antibacterial; Antioxidant; Antidiabetic

向作者/读者索取更多资源

The current research study is to develop an easy and eco-friendly method for the synthesis of AgNPs using aqueous leaf extract of Calophyllum tomentosum (CtAgNPs) and evaluated the extract to know the effects of anti-bacterial, antioxidant, anti-diabetic, anti-inflammatory and anti-tyrosinase activity. Using UV-vis spectrophotometer, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) characterized the Calophyllum tomentosum mediated silver nanoparticles. The leaf extract of C. tomentosum yielded flavonoids, saponins, tannins, alkaloids, glycosides, phenols, terpenoids and coumarins. AgNPs formation was confirmed by UV-vis spectra at 438 nm. Crystalline structure with a face centered cubic (fcc) of AgNPs was observed in XRD. FTIR had shown that the phytochemicals were responsible for the reduction and capping material of silver nanoparticles. The size and shape of the AgNPs were determined using SEM. From EDX study analysed the strong absorption property of AgNPs. The CtAgNPs have showed significant antibacterial activity on multi drug resistance bacteria. The CtAgNPs had shown strong antioxidant (DPPH, H2O2 scavenging, nitric oxide scavenging power, reducing power) activities. The CtAgNPs had strongly inhibited the alpha-glucosidase and DPPIV compared to alpha-amylase. The CtAgNPs exhibited strong anti-inflammatory activity (albumin denaturation, membrane stabilization, heat haemolytic, protein inhibitory, lipoxygenase, xanthine oxidase) and tyrosinase inhibitory activity. To our best knowledge, this is the first attempt on the synthesis of silver nanoparticles using Calophyllum tomentosum leaves extract. Hence, to validate our results the in vivo studies at molecular level are needed to develop an antioxidant, anti-diabetic and anti-inflammatory agent. (C) 2018 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据