3.8 Article

OPTIMIZATION OF PROCESS PARAMETERS IN FUSED DEPOSITION MODELING USING WEIGHTED PRINCIPAL COMPONENT ANALYSIS

期刊

JOURNAL OF ADVANCED MANUFACTURING SYSTEMS
卷 10, 期 2, 页码 241-259

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0219686711002181

关键词

Fused deposition modeling (FDM); weighted principal component analysis; Taguchi method; ANOVA; signal-to-noise (S/N) ratio

向作者/读者索取更多资源

Fused deposition modeling (FDM) is a process by which functional parts can be produced rapidly through deposition of fused layers of material according to a numerically defined cross-sectional geometry. Literature suggests that process parameters largely influence on quality characteristics of rapid prototyping (RP) parts. A functional part is subjected to different loading conditions in actual practice. Therefore, process parameters need to be determined in such a way that they collectively optimize more than one response simultaneously. To address this issue, effect of important process parameters viz., layer thickness, orientation, raster angle, raster width, and air gap have been studied. The responses considered in this study are mechanical property of FDM produced parts such as tensile, bending and impact strength. The multiple responses are converted into a single response using principal component analysis (PCA) so that influence of correlation among the responses can be eliminated. Resulting single response is nothing but the weighted sum of three principal components that explain almost hundred percent of variation. The experiments have been conducted in accordance with Taguchi's orthogonal array to reduce the experimental runs. The results indicate that all the factors such as layer thickness, orientation, raster angle, raster width and air gap and interaction between layer thickness and orientation significantly influence the response. Optimum parameter settings have been identified to simultaneously optimize three responses. The mechanism of failure is explained with the help of SEM micrographs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据