4.3 Article

Paracrystalline structure of gold, silver, palladium and platinum nanoparticles

期刊

JOURNAL OF APPLIED CRYSTALLOGRAPHY
卷 51, 期 -, 页码 411-419

出版社

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S1600576718001723

关键词

metal nanoparticles; X-ray diffraction; pair distribution function; paracrystalline structure

向作者/读者索取更多资源

Metallic nanoparticles are of great importance because of their unique physical, chemical, antimicrobial, diagnostic, therapeutic, biomedical, sensing, biosensing, catalytic and optical properties. Detailed knowledge of the atomic scale structure of these materials is essential for understanding their activities and for exploiting their potential. This paper reports structural studies of silica-supported silver, gold, palladium and platinum nanoparticles using X-ray diffraction and high-resolution transmission electron microscopy. Electron microscopy observation allowed the determination of nanoparticle sizes, which were estimated to be in the range of 45-470 angstrom, and their distribution. The obtained histograms exhibit a multimodal distribution of the investigated nanoparticle sizes. The X-ray diffraction data were analyzed using the Rietveld method in the form of Williamson-Hall plots, the PDFgui fitting procedure and model-based simulation. The Williamson-Hall plots provide evidence for the presence of strain in all investigated samples. The PDFgui fitting results indicate that the investigated nanoparticles consist of atomic clusters with different sizes and degrees of disorder as well as slightly different lattice parameters. The detailed structural characterization performed via model-based simulations proves that all samples exhibit a face-centered cubic type structure with paracrystalline distortion. The degree of disorder predicted by the paracrystalline theory is correlated with the sizes of the nanoparticles. The catalytic properties of the investigated noble metals are discussed in relation to their disordered structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据