4.7 Article

Dual-Hop Communication Over a Satellite Relay and Shadowed Rician Channels

期刊

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
卷 64, 期 9, 页码 4031-4040

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2014.2361832

关键词

Amplify-and-forward (AF); dual-hop communication; satellite relaying; spatial diversity

向作者/读者索取更多资源

A dual-hop amplify-and-forward (AF) relaying scheme over shadowed Rician fading channels is investigated. Specifically, the source and destination nodes are equipped with N and M antennas, respectively, whereas the relay is equipped with a single antenna. Communication via satellite relaying represents a direct application of the considered infrastructure. To this end, we study the scenario when the source and the destination are terrestrial nodes, whereas the end-to-end communication is established through an intermediate AF relay node, which is a satellite. To fully exploit the spatial diversity provided by multiple antennas, maximum ratio transmission and maximum ratio combining are implemented at the source and the destination, respectively. First, a new closed-form expression for the probability density function (pdf) of the sum of independent and identically distributed (i.i.d.) squared shadowed Rician random variables is derived by assuming integer distribution parameters. Capitalizing on the latter pdf, new closed-form results for the cumulative distribution function (cdf) and the moment function of the end-to-end signal-to-noise ratio (SNR) are obtained. Particularly, the proposed unified analysis includes the channel-state-information (CSI)-assisted and the fixed-gain AF relaying protocols. New expressions for important performance measures, namely, the outage probability, the average symbol error probability (ASEP), and the ergodic capacity of the end-to-end SNR, are presented for both AF schemes. Moreover, some useful engineering insights are manifested, such as simplified asymptotic outage performance results, the diversity order, and the impact on the number of antennas at the source and the destination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据