4.6 Article

Cyclic Correntropy: Foundations and Theories

期刊

IEEE ACCESS
卷 6, 期 -, 页码 34659-34669

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2018.2847346

关键词

Cyclic correntropy; cyclic correlation; cyclostationarity; implusive noise

资金

  1. National Natural Science Foundation of China [61139001, 61172108, 61671105, 81241059]
  2. Natural Science Foundation of Jiangsu Province for Youth

向作者/读者索取更多资源

Over the past several decades, cyclostationarity has been regarded as one of the most significant theories in the research of non-stationary signal processing; therefore, it has been widely used to solve a large variety of scientific problems, such as weak signal detection, parameter estimation, pattern recognition, and mechanical signature analysis. Despite offering a feasible solution, cyclostationarity-based methods suffer from performance degradation in the presence of impulsive noise, so the methods are less adaptable and practicable. To improve the effectiveness of these algorithms, a nonlinear similarity measurement, referred to as cyclic correntropy or cyclostationary correntropy, was recently proposed that innovatively combines the cyclostationarity technology and the concept of correntropy and successfully changes the signal analysis from the finite dimensional space (Euclidean space) to the infinite dimensional space (Hilbert space). However, to date, the study of cyclic correntropy has been limited, and it needs to be explored further. In this paper, the foundations and theories of cyclic correntropy are elucidated rigorously to complete and develop the methodology, including basic definitions, statistical formalisms, mathematical derivations, convergence theorem, spectrum analysis, and kernel length estimation. It is believed that the cyclic correntropy, a novel methodology equipped with the precise framework of cyclostationarity, can address the problem of impulsive noise in mechanical and communication signals and that its algorithmic idea of crossing spaces will have a far-reaching impact on the development of signal processing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据