4.6 Article

A Data-Driven Design for Fault Detection of Wind Turbines Using Random Forests and XGboost

期刊

IEEE ACCESS
卷 6, 期 -, 页码 21020-21031

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2018.2818678

关键词

Wind turbines; fault detection; data-driven; random forests; extreme gradient boosting

资金

  1. National Natural Science Foundation of China [51705453, 51579222]
  2. NSFC-RCUK/EPSRC [51761135011]
  3. Fundamental Research Funds for the Central Universities [2017XZZX001-02A, 2017FZA4028, 2017QNA4040]

向作者/读者索取更多资源

Wind energy has seen great development during the past decade. However, wind turbine availability and reliability, especially for offshore sites, still need to be improved, which strongly affect the cost of wind energy. Wind turbine operational cost is closely depending on component failure and repair rate, while fault detection and isolation will be very helpful to improve the availability and reliability factors. In this paper, an efficient machine learning method, random forests (RFs) in combination with extreme gradient boosting (XGBoost), is used to establish the data-driven wind turbine fault detection framework. In the proposed design, RF is used to rank the features by importance, which are either direct sensor signals or constructed variables from prior knowledge. Then, based on the top-ranking features, XGBoost trains the ensemble classifier for each specific fault. In order to verify the effectiveness of the proposed approach, numerical simulations using the state-of-the-art wind turbine simulator FAST are conducted for three different types of wind turbines in both the below and above rated conditions. It is shown that the proposed approach is robust to various wind turbine models including offshore ones in different working conditions. Besides, the proposed ensemble classifier is able to protect against overfitting, and it achieves better wind turbine fault detection results than the support vector machine method when dealing with multidimensional data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据