4.7 Article

Efficient generation of complete sequences of MDR-encoding plasmids by rapid assembly of MinION barcoding sequencing data

期刊

GIGASCIENCE
卷 7, 期 3, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/gigascience/gix132

关键词

multidrug resistance (MDR) plasmids; de novo assembly; nanopore sequencing; long reads

资金

  1. Chinese National Key Basic Research and Development (973) Program [2013CB127200]
  2. Collaborative Research Fund of the Hong Kong Research Grant Council [C7038-15G, C5026-16G]

向作者/读者索取更多资源

Background: Multidrug resistance (MDR)-encoding plasmids are considered major molecular vehicles responsible for transmission of antibiotic resistance genes among bacteria of the same or different species. Delineating the complete sequences of such plasmids could provide valuable insight into the evolution and transmission mechanisms underlying bacterial antibiotic resistance development. However, due to the presence of multiple repeats of mobile elements, complete sequencing of MDR plasmids remains technically complicated, expensive, and time-consuming. Results: Here, we demonstrate a rapid and efficient approach to obtaining multiple MDR plasmid sequences through the use of the MinION nanopore sequencing platform, which is incorporated in a portable device. By assembling the long sequencing reads generated by a single MinION run according to a rapid barcoding sequencing protocol, we obtained the complete sequences of 20 plasmids harbored by multiple bacterial strains. Importantly, single long reads covering a plasmid end-to-end were recorded, indicating that de novo assembly may be unnecessary if the single reads exhibit high accuracy. Conclusions: This workflow represents a convenient and cost-effective approach for systematic assessment of MDR plasmids responsible for treatment failure of bacterial infections, offering the opportunity to perform detailed molecular epidemiological studies to probe the evolutionary and transmission mechanisms of MDR-encoding elements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据