4.7 Article

Source Apportionment of Brown Carbon Absorption by Coupling Ultraviolet-Visible Spectroscopy with Aerosol Mass Spectrometry

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.estlett.8b00118

关键词

-

资金

  1. European Union [689443]
  2. Swiss Federal Office for the Environment (FOEN)
  3. Onassis Foundation (Greece)

向作者/读者索取更多资源

The impact of brown carbon (BrC) on climate has been widely acknowledged but remains uncertain, because either its contribution to absorption is being ignored in most climate models or the associated mixed emission sources and atmospheric lifetime are not accounted for. In this work, we propose positive matrix factorization as a framework to apportion the contributions of individual primary and secondary organic aerosol (OA) source components of BrC absorption, by combining long-term aerosol mass spectrometry (AMS) data with concurrent ultraviolet-visible (UV-vis) spectroscopy measurements. The former feature time-depend ent factor contributions to OA mass, and the latter consist of wavelength-dependent absorption coefficients. Using this approach for a full-year case study, we estimate for the first time the mass absorption efficiency (MAE) of major light-absorbing water soluble OA components in the atmosphere. We show that secondary biogenic OA contributes negligibly to absorption despite dominating the mass concentration in the summer. In contrast, primary and secondary wood burning emissions are highly absorbing up to 500 nm. The approach allowed us to constrain their MAE within a confined range consistent with previous laboratory work, which can be used in climate models to estimate the impact of BrC from these emissions on the overall absorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据