4.3 Article

Antigen 85B peptidomic analysis allows species-specific mycobacterial identification

期刊

CLINICAL PROTEOMICS
卷 15, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12014-017-9177-6

关键词

Tuberculosis; Nontuberculous mycobacteria; Antigen 85B; Diagnosis; Liquid chromatography-tandem mass spectrometry

资金

  1. US National Institute of Allergy and Infectious Diseases [R01Al113725, R01HD090927, R01AI122932]
  2. Intramural Research Programs of the NIH Clinical Center, National Institutes of Health

向作者/读者索取更多资源

Background: Nontuberculous mycobacteria (NTM)-mediated infections are a growing cause of worldwide morbidity, but lack of rapid diagnostics for specific NTM species can delay the initiation of appropriate treatment regimens. We thus examined whether mass spectrometry analysis of an abundantly secreted mycobacterial antigen could identify specific NTM species. Methods: We analyzed predicted tryptic peptides of the major mycobacterial antigen Ag85B for their capacity to distinguish Mycobacterium tuberculosis and three NTM species responsible for the majority of pulmonary infections caused by slow-growing mycobacterial species. Next, we analyzed trypsin-digested culture supernatants of these four mycobacterial species by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect candidate species-specific Ag85B peptides, the identity of which were validated by LC-MS/MS performed in parallel reaction monitoring mode. Results: Theoretical tryptic digests of the Ag85B proteins of four common mycobacterial species produced peptides with distinct sequences, including two peptides that could each identify the species origin of each Ag85B protein. LC-MS/MS analysis of trypsinized culture supernatants of these four species detected one of these species-specific signature peptides in each sample. Subsequent LC-MS/MS analyses confirmed these results by targeting these species-specific Ag85B peptides. Conclusions: LC-MS/MS analysis of Ag85B peptides from trypsin-digested mycobacterial culture supernatants can rapidly detect and identify common mycobacteria responsible for most pulmonary infections caused by slow-growing mycobacteria, and has the potential to rapidly diagnose pulmonary infections caused by these mycobacteria through direct analysis of clinical specimens.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据