4.5 Article

quantitative spectral analysis of 14 hypervelocity stars from the MMT survey

期刊

ASTRONOMY & ASTROPHYSICS
卷 615, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201833315

关键词

stars: distances; stars: early-type; stars: fundamental parameters

资金

  1. National Aeronautics and Space Administration
  2. Alfred P. Sloan Foundation
  3. National Science Foundation
  4. U.S. Department of Energy
  5. Japanese Monbukagakusho
  6. Max Planck Society
  7. University of Chicago
  8. Fermilab
  9. Institute for Advanced Study
  10. Japan Participation Group
  11. Johns Hopkins University
  12. Los Alamos National Laboratory
  13. Max-Planck-Institute for Astronomy (MPIA)
  14. Max- Planck- Institute for Astrophysics (MPA)
  15. New Mexico State University
  16. University of Pittsburgh
  17. Princeton University
  18. United States Naval Observatory
  19. University of Washington
  20. STFC [ST/P000312/1] Funding Source: UKRI

向作者/读者索取更多资源

Context. Hypervelocity stars (HVSs) travel so fast that they may leave the Galaxy. The tidal disruption of a binary system by the supermassive black hole in the Galactic center is widely assumed to be their ejection mechanism. Aims. To test the hypothesis of an origin in the Galactic center using kinematic investigations, the current space velocities of the HVSs need to be determined. With the advent of Gaia's second data release, accurate radial velocities from spectroscopy are complemented by proper motion measurements of unprecedented quality. Based on a new spectroscopic analysis method, we provide revised distances and stellar ages, both of which are crucial to unravel the nature of the HVSs. Methods. We reanalyzed low-resolution optical spectra of 14 HVSs from the MMT HVS survey using a new grid of synthetic spectra, which account for deviations from local thermodynamic equilibrium, to derive effective temperatures, surface gravities, radial velocities, and projected rotational velocities. Stellar masses, radii, and ages were then determined by comparison with stellar evolutionary models that account for rotation. Finally, these results were combined with photometric measurements to obtain spectroscopic distances. Results. The resulting atmospheric parameters are consistent with those of main sequence stars with masses in the range 2.5-5.0 M-circle dot. The majority of the stars rotate at fast speeds, providing further evidence for their main sequence nature. Stellar ages range from 90 to 400 Myr and distances (with typical 1 sigma-uncertainties of about 10-15%) from 30 to 100 kpc. Except for one object (B 711), which we reclassify as A-type star, all stars are of spectral type B. Conclusions. The spectroscopic distances and stellar ages derived here are key ingredients for upcoming kinematic studies of HVSs based on Gaia proper motions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据