4.6 Article

Monitoring Damage Using Acoustic Emission Source Location and Computational Geometry in Reinforced Concrete Beams

期刊

APPLIED SCIENCES-BASEL
卷 8, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/app8020189

关键词

non-destructive test; concrete; acoustic emission; computational geometry; convex hull

资金

  1. JSPS-Ronpaku Scholarship

向作者/读者索取更多资源

Non-destructive testing in reinforced concrete (RC) for damage detection is still limited to date. In monitoring the damage in RC, 18 beam specimens with varying water cement ratios and reinforcements were casted and tested using a four-point bending test. Repeated step loads were designed and at each step load acoustic emission (AE) signals were recorded and processed to obtain the acoustic emission source location (AESL). Computational geometry using a convex hull algorithm was used to determine the maximum volume formed by the AESL inside the concrete beam in relation to the load applied. The convex hull volume (CHV) showed good relation to the damage encountered until 60% of the ultimate load at the midspan was reached, where compression in the concrete occurred. The changes in CHV from 20 to 40% and 20 to 60% load were five and 13 times from CHV of 20% load for all beams, respectively. This indicated that the analysis in three dimensions using CHV was sensitive to damage. In addition, a high water-cement ratio exhibited higher CHV formation compared to a lower water-cement ratio due to its ductility where the movement of AESL becomes wider.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据