4.6 Article

A UAV-Based Visual Inspection Method for Rail Surface Defects

期刊

APPLIED SCIENCES-BASEL
卷 8, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/app8071028

关键词

rail surface defect; UAV image; defect detection; gray stretch maximum entropy; image enhancement; defect segmentation

资金

  1. National Key R&D Program of China [2016YFB1200203]
  2. National Natural Science Foundation of China [91738303]
  3. State Key Laboratory of Rail Traffic Control and Safety [RCS2016ZQ003, RCS2016ZT018]

向作者/读者索取更多资源

Rail surface defects seriously affect the safety of railway systems. At present, human inspection and rail vehicle inspection are the main approaches for the detection of rail surface defects. However, there are many shortcomings to these approaches, such as low efficiency, high cost, and so on. This paper presents a novel visual inspection approach based on unmanned aerial vehicle (UAV) images, and focuses on two key issues of UAV-based rail images: image enhancement and defects segmentation. With regards to the first aspect, a novel image enhancement algorithm named Local Weber-like Contrast (LWLC) is proposed to enhance rail images. The rail surface defects and backgrounds can be highlighted and homogenized under various sunlight intensity by LWLC, due to its illuminance independent, local nonlinear and other advantages. With regards to the second, a new threshold segmentation method named gray stretch maximum entropy (GSME) is presented in this paper. The proposed GSME method emphasizes gray stretch and de-noising on UAV-based rail images, and selects an optimal segmentation threshold for defects detection. Two visual comparison experiments were carried out to demonstrate the efficiency of the proposed methods. Finally, a quantitative comparison experiment shows the LWLC-GSME model achieves a recall of 93.75% for T-I defects and of 94.26% for T-II defects. Therefore, LWLC for image enhancement, in conjunction with GSME for defects segmentation, is efficient and feasible for the detection of rail surface defects based on UAV Images.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据