4.6 Article

Application of the Wave Propagation Approach to Sandwich Structures: Vibro-Acoustic Properties of Aluminum Honeycomb Materials

期刊

APPLIED SCIENCES-BASEL
卷 8, 期 1, 页码 -

出版社

MDPI AG
DOI: 10.3390/app8010045

关键词

bending wave propagation; bending stiffness; sandwich panel; sound transmission loss

向作者/读者索取更多资源

Sandwich structures are manufactured using multiple combinations of materials for core and laminates. The real performances are influenced by variability in the composing layers and even by the uncertainties introduced while bonding them together. Therefore, experimental tests are usually the preferred way to assess the most important parameters required to develop and to characterize the product, the main downsides lying in their cost and time consumption. This work explores a practical application of the wave propagation approach by means of a case study, in which some significant properties of an aluminum honeycomb panel are obtained starting from simple vibro-acoustic tests carried out on beam specimens. After determining the frequency-dependent bending stiffness function, the sound transmission loss is predicted and compared with the experimental results obtained in sound transmission suites. The same vibro-acoustic tests are used to estimate the core shear modulus. Finally, a parametric study is proposed to show how this technique can be effectively used in the early design stage, when producing physical samples is often impossible due to time and money constraints. The method proved to be a reliable and powerful tool in all the tested applications, providing good results with limited computational effort.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据