4.8 Article

Smart Construction of Integrated CNTs/Li4Ti5O12 Core/Shell Arrays with Superior High-Rate Performance for Application in Lithium-Ion Batteries

期刊

ADVANCED SCIENCE
卷 5, 期 3, 页码 -

出版社

WILEY
DOI: 10.1002/advs.201700786

关键词

carbon nanotubes; conductive networks; lithium ion batteries; lithium titanate; ultrafast energy storage

资金

  1. National Natural Science Foundation of China [51502263, 51772272, 51728204]
  2. Qianjiang Talents Plan D [QJD1602029]
  3. Program for Innovative Research Team in University of Ministry of Education of China [IRT13037]
  4. Startup Foundation for Hundred-Talent Program of Zhejiang University
  5. Fundamental Research Funds for the Central Universities [2015XZZX010-02]

向作者/读者索取更多资源

Exploring advanced high-rate anodes is of great importance for the development of next-generation high-power lithium-ion batteries (LIBs). Here, novel carbon nanotubes (CNTs)/Li4Ti5O12 (LTO) core/shell arrays on carbon cloth (CC) as integrated high-quality anode are constructed via a facile combined chemical vapor deposition-atomic layer deposition (ALD) method. ALD-synthesized LTO is strongly anchored on the CNTs' skeleton forming core/shell structures with diameters of 70-80 nm the combined advantages including highly conductive network, large surface area, and strong adhesion are obtained in the CC-LTO@CNTs core/shell arrays. The electrochemical performance of the CC-CNTs/LTO electrode is completely studied as the anode of LIBs and it shows noticeable high-rate capability (a capacity of 169 mA h g(-1) at 1 C and 112 mA h g(-1) at 20 C), as well as a stable cycle life with a capacity retention of 86% after 5000 cycles at 10 C, which is much better than the CC-LTO counterpart. Meanwhile, excellent cycling stability is also demonstrated for the full cell with LiFePO4 cathode and CC-CNTs/LTO anode (87% capacity retention after 1500 cycles at 10 C). These positive features suggest their promising application in high-power energy storage areas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据