3.8 Article

Porous Three-Dimensional Silk Fibroin Scaffolds for Tracheal Epithelial Regeneration in Vitro and in Vivo

期刊

ACS BIOMATERIALS SCIENCE & ENGINEERING
卷 4, 期 8, 页码 2977-2985

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsbiomaterials.8b00419

关键词

tracheal reconstruction; silk fibroin scaffold; airway epithelial cell; cell culture; tissue engineering

资金

  1. National Natural Science Foundation of China [81271094]
  2. Shanghai Science and Technology Committee [17441901600]

向作者/读者索取更多资源

The regeneration of functional epithelial lining is critical for artificial grafts to repair tracheal defects. Although silk fibroin (SF) scaffolds have been widely studied for biomedical application (e.g., artificial skin), its potential for tracheal substitute and epithelial regeneration is still unknown. In this study, we fabricated porous three-dimensional (3D) silk fibroin scaffolds and cocultured them with primary human tracheobronchial epithelial cells (HBECs) for 21 days in vitro. Examined by scanning electronic microscopy (SEM) and calcein-AM staining with inverted phase contrast microscopy, the SF scaffolds showed excellent properties of promoting cell growth and proliferation for at least 21 days with good viability. In vivo, the porous 3D SF scaffolds (n = 18) were applied to repair a rabbit anterior tracheal defect. In the control group (n = 18), rabbit autologous pedicled trachea wall without epithelium, an ideal tracheal substitute, was implanted in situ. Observing by endoscopy and computed tomography (CT) scan, the repaired airway segment showed no wall collapse, granuloma formation, or stenosis during an 8-week interval in both groups. SEM and histological examination confirmed the airway epithelial growth on the surface of porous SF scaffolds. Both the epithelium repair speed and the epithelial cell differentiation degree in the SF scaffold group were comparable to those in the control group. Neither severe inflammation nor excessive fibrosis occurred in both groups. In summary, the porous 3D SF scaffold is a promising biomaterial for tracheal repair by successfully supporting tracheal wall contour and promoting tracheal epithelial regeneration

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据