4.3 Article

Expression analysis of proteinase inhibitor-II under OsRGLP2 promoter in response to wounding and signaling molecules in transgenic Nicotiana benthamiana

期刊

3 BIOTECH
卷 8, 期 -, 页码 -

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s13205-017-1070-5

关键词

Proteinase inhibitor-II; Wounding; GUS activity; Signaling pathways; Stress tolerance

资金

  1. Higher Education Commission, Islamabad, Pakistan

向作者/读者索取更多资源

Proteinase inhibitor-II (PI-II) genes are important defense related genes that play critical regulatory roles in plant growth and development. In the present study, the expression of tomato PI-II gene was investigated under the control of a wound-inducible OsRGLP2 (Oryza sativa root germin like protein 2) promoter in transgenic tobacco plants after wounding, ABA and MeJA applications. Transcript level of target gene in transgenic plants was confirmed by quantitative real time PCR (qPCR). In response to ABA treatment at different concentrations, PI-II gene was strongly induced under OsRGLP2 promoter at higher concentration (100 mu M), while considerable level of target gene expression was observed with MeJA application at 50 mu M concentration. Upon wounding, relatively high PI-II gene expression was observed after 36-h treatment. Correspondingly, high GUS activity was detected at 36 h with histochemical assay and microscopic analysis in the vascular regions of leaves, stem and roots in wounded transgenic plants. This inducibility of PI-II gene by wounding, ABA and MeJA indirectly indicates its role in plant defense mechanism against biotic and abiotic stresses. Moreover, it was also suggested that ABA and MeJA dependent signaling pathways are involved in stimulation of PI-II gene. To the best of our knowledge, this is the first report describing the induction of PI-II gene under the regulation of OsRGLP2 promoter under stress conditions. The results of present research are useful for potential role of PI-II gene to improve stress tolerance in transgenic crops. Thus, efficacy of this gene can potentially be exploited to test the responses of different plants to various environmental stresses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据