4.3 Review

Salvage harvesting for bioenergy in Canada: From sustainable and integrated supply chain to climate change mitigation

出版社

WILEY PERIODICALS, INC
DOI: 10.1002/wene.298

关键词

biofuel; biomass; boreal forest; fire; insect; integrated supply chain; low-carbon economy; natural disturbance; pellet

资金

  1. BioFuelNet Canada
  2. Natural Resources Canada EcoEnergy Innovation Initiative

向作者/读者索取更多资源

Driven by the policy imperatives of mitigating greenhouse gas (GHG) emissions and improving energy security, an increasing proportion of global energy demand is being met by nonfossil energy sources. The socioeconomic and environmental benefits of replacing fossil fuels with bioenergy are complex; however, debate continues about issues such as best practices for biomass removal, stable supply chains, and GHG mitigation. With the greatest biomass per capita in the world, Canada could play an increasing role in the future of global bioenergy and the emerging bioeconomy. This paper reviews the utilization of feedstock salvaged after natural disturbances (fire and insect outbreaks) to supply wood-based bioenergy, by addressing the following multidisciplinary questions: (1) How much salvaged feedstock is available, and what are the uncertainties around these estimates? (2) How can sustainable practices to support increased removal of biomass be implemented? (3) What are the constraints on development of an integrated supply chain and cost-effective mobilization of the biomass? (4) Is the quality of biomass from salvaged trees suitable for conversion to bioenergy? (5) What is the potential for climate change mitigation? In average, salvaged feedstock from fire and insects could theoretically provide about 100 x 10(6) oven Dry ton (ODT) biomass per year, with high variability over time and space. Existing policies and guidelines for harvesting of woody biomass in Canadian jurisdictions could support sustainable biomass removal. However, uncertainties remain as to the development of competitive and profitable supply chains, because of the large distances between the locations of this feedstock and available processing sites. Another uncertainty lies in the time needed for a benefit in climate change mitigation to occur. A flexible supply chain, integrated with other sources of biomass residues, is needed to develop a cost-efficient bioenergy sector. This article is categorized under: Bioenergy > Climate and Environment

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据