4.6 Article

Tea saponin reduces the damage of Ectropis obliqua to tea crops, and exerts reduced effects on the spiders Ebrechtella tricuspidata and Evarcha albaria compared to chemical insecticides

期刊

PEERJ
卷 6, 期 -, 页码 -

出版社

PEERJ INC
DOI: 10.7717/peerj.4534

关键词

Tea saponin; E. obliqua; Toxicity; Enzyme activities; Controlling efficacy

资金

  1. State's Key Project of Research and Development Plan [2016YFD0200900]
  2. National Natural Science Foundation of China [31672317]
  3. Competitive Planning Projects of Hubei Academy of Agricultural Sciences [2016jzxjh012]

向作者/读者索取更多资源

Background. Tea is one of the most economically important' crops in China. However, the tea geometrid (Ectropis obliqua), a serious leaf-feeding pest, causes significant damage to tea crops and reduces tea yield and quality. Spiders are the most dominant predatory enemies in the tea plantation ecosystem, which useful biological control agents of E. obliqua. These highligl pest control measures. Our previous studies have shown makes them potentially it the need for alternative' that tea saponin (TS) exerts insecticidal activity against lepidopteran pests. Here, we investigate whether TS represents a potentially new alternative insecticide with no harm to spiders. Methods. We investigated laboratory bioactivities and the field control properties of TS solution against E. obliqua. (i) A leaf-dip bioassay was used to evaluate the toxicity of TS to 3rd-instar E. obliqua larvae and effects of TS on the activities of enzymes glutathione-S-transferase (GST), acetylcholinesterase (AChE), carboxylesterase (CES) and peroxidase (POD) of 3rd-instar E. obliqua larvae in the laboratory. (ii) Topical application was used to measure the toxicity of 30% TS (w/v) and two chemical insecticides (10% bifenthrin EC and 50% diafenthiuron SC) to two species of spider, Ebrechtella tricuspidata and Evarcha albaria. Field trials were used to linvestigate the controlling efficacy of 30% TS against E. obliqua larvae and to classify the effect of TS to spiders in the tea plantation. Results. The toxicity of TS to 3rd-instar E. obliqua larvae occurred in a dose-dependent manner and the LC50 was 164.32 mg/mL. Activities of the detoxifying-related enzymes, GST and POD, increased in 3rd-instar E. obliqua larvae, whereas AChE and CES were inhibited with time by treatment with TS. Mortalities of E. tricuspidata and E. albaria after 48 h with 30% TS treatment (16.67% and 20%, respectively) were significantly lower than those with 10% bifenthrin EC (80% and 73.33%, respectively) and 50% diafenthiuron EC (43.33% and 36.67%, respectively). The highest controlling efficacy of 30% TS was 77.02% at 5 d after treatment, which showed no difference to 10% bifenthrin EC or 50% diafenthiuron SC. 30% TS was placed in the class N (harmless or slightly harmful) of IOBC (International Organization of Biological Control) categories for natural enemies, namely spiders. Conclusions. Our results indicate that TS is a botanical insecticide that has a good controlling efficacy in E.obliqua larvae which suggests it has promise as application in larvae, the integrated pest management (IPM) envisaged for tea crops.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据