4.5 Article

Neuroplasticity of cognitive control networks following cognitive training for chronic traumatic brain injury

期刊

NEUROIMAGE-CLINICAL
卷 18, 期 -, 页码 262-278

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.nicl.2018.01.030

关键词

Traumatic brain injury; Rehabilitation; Cognitive function; Resting-state functional connectivity; Neuroplasticity; Cognitive control

资金

  1. Department of Defense [W81XWH-11-2-0194, W81XWH-11-2-0195]
  2. Meadows Foundation
  3. Sapphire Foundation Distinguished New Scientist Award

向作者/读者索取更多资源

Cognitive control is the ability to coordinate thoughts and actions to achieve goals. Cognitive control impairments are one of the most persistent and devastating sequalae of traumatic brain injuries (TBI). There have been efforts to improve cognitive control in individuals with post-acute TBI. Several studies have reported changes in neuropsychological measures suggesting the efficacy of cognitive training in improving cognitive control. Yet, the neural substrates of improved cognitive control after training remains poorly understood. In the current study, we identified neural plasticity induced by cognitive control training for TBI using resting-state functional connectivity (rsFC). Fifty-six individuals with chronic mild TBI (9 years post-injury on average) were randomized into either a strategy-based cognitive training group (N = 26) or a knowledge-based training group (active control condition; N = 30) for 8 weeks. We acquired a total of 109 resting-state functional magnetic resonance imaging from 45 individuals before training, immediately post-training, and 3 months post-training. Relative to the controls, the strategy-based cognitive training group showed monotonic increases in connectivity in two cognitive control networks (i.e., cingulo-opercular and fronto-parietal networks) across time points in multiple brain regions (p(voxel) < 0.001, p(cluster) < 0.05). Analyses of brain-behavior relationships revealed that frontoparietal network connectivity over three time points within the strategy-based cognitive training group was positively associated with the trail making scores (p(voxel) < 0.001, p(cluster) < 0.05). These findings suggest that training-induced neuroplasticity continues through chronic phases of TBI and that rsFC can serve as a neuroimaging biomarker of evaluating the efficacy of cognitive training for TBI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据