4.7 Article

Stretchable Supercapacitors Based on Carbon Nanotubes-Deposited Rubber Polymer Nanofibers Electrodes with High Tolerance against Strain

期刊

NANOMATERIALS
卷 8, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/nano8070541

关键词

supercapacitors; stretchable; SBS nanofiber; carbon nanotube; electrospinning

资金

  1. Korea Institute of Energy Technology Evaluation and Planning (KETEP)
  2. Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea [20174030201470]
  3. Nano.Material Technology Development Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning [2009-0082580]

向作者/读者索取更多资源

We report a new fabrication method for a fully stretchable supercapacitor based on single wall carbon nanotube (SWCNT)-coated electrospun rubber nanofibers as stretchable supercapacitor electrodes. The deposition conditions of SWCNT on hydrophobic rubber nanofibers are experimentally optimized to induce a uniform coating of SWCNT. For surfactant-assisted coating of SWCNT, both water contact angle and sheet resistance were lower compared to the cases with other surface treatment methods, indicating a more effective coating approach. The excellent electromechanical properties of this electrode under stretching conditions are demonstrated by the measurement of Young's modulus and normalized sheet resistance. The superb tolerance of the electrode with respect to stretching is the result of (i) high aspect ratios of both nanofiber templates and the SWCNT conductors, (ii) the highly elastic nature of rubbery nanofibers, and (iii) the strong adherence of SWCNT-coated nanofibers on the elastic ecoflex substrate. Electrochemical and electromechanical measurements on stretchable supercapacitor devices reveal that the volumetric capacitance (15.2 F cm(-3) at 0.021 A cm(-3)) of the unstretched state is maintained for strains of up to 40%. At this level of strain, the capacitance after 1,000 charge/discharge cycles was not significantly reduced. The high stability of our stretchable device suggests potential future applications in various types of wearable energy storage devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据