4.7 Article

Interface Passivation Effects on the Photovoltaic Performance of Quantum Dot Sensitized Inverse Opal TiO2 Solar Cells

期刊

NANOMATERIALS
卷 8, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/nano8070460

关键词

quantum dot-sensitized solar cells (QDSSCs); inverse opal-TiO2; surface passivation

资金

  1. Japan Science and Technology Agency (JST) CREST program
  2. Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture [UDC2018031121]
  3. MEXT KAKENHI [26286013, 17H02736]
  4. UEC postdoctoral program

向作者/读者索取更多资源

Quantum dot (QD)-sensitized solar cells (QDSSCs) are expected to achieve higher energy conversion efficiency than traditional single-junction silicon solar cells due to the unique properties of QDs. An inverse opal (IO)-TiO2 (IO-TiO2) electrode is useful for QDSSCs because of its three-dimensional (3D) periodic nanostructures and better electrolyte penetration compared to the normal nanoparticles (NPs)-TiO2 (NPs-TiO2) electrode. We find that the open-circuit voltages V-oc of the QDSSCs with IO-TiO2 electrodes are higher than those of QDSSCs with NPs-TiO2 electrodes. One important strategy for enhancing photovoltaic conversion efficiency of QDSSCs with IO-TiO2 electrodes is surface passivation of photoanodes using wide-bandgap semiconducting materials. In this study, we have proposed surface passivation on IO-TiO2 with ZnS coating before QD deposition. The efficiency of QDSSCs with IO-TiO2 electrodes is largely improved (from 0.74% to 1.33%) because of the enhancements of V-oc (from 0.65 V to 0.74 V) and fill factor (FF) (from 0.37 to 0.63). This result indicates that ZnS passivation can reduce the interfacial recombination at the IO-TiO2/QDs and IO-TiO2/electrolyte interfaces, for which two possible explanations can be considered. One is the decrease of recombination at IO-TiO2/electrolyte interfaces, and the other one is the reduction of the back-electron injection from the TiO2 electrode to QDs. All of the above results are effective for improving the photovoltaic properties of QDSSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据