4.7 Article

N- and C-Modified TiO2 Nanotube Arrays: Enhanced Photoelectrochemical Properties and Effect of Nanotubes Length on Photoconversion Efficiency

期刊

NANOMATERIALS
卷 8, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/nano8040198

关键词

TiO2 nanotube arrays; N- and C-modification; band gap; recombination rate; photocurrent; photoconversion efficiency

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Central Metallurgical Research and Development Institute (CMRDI), Cairo, Egypt

向作者/读者索取更多资源

In this investigation, a new, facile, low cost and environmental-friendly method was introduced to fabricate N- and C-modified TiO2 nanotube arrays by immersing the as-anodized TiO2 nanotube arrays (TNTAs) in a urea aqueous solution with mechanical agitation for a short time and keeping the TNTAs immersed in the solution for 6 h at room temperature. Then, the TNTAs were annealed at different temperatures. The produced N-, C-modified TNTAs were characterized using FESEM, EDX, XRD, XPS, UV-Vis diffuse reflectance spectra. Modified optical properties with narrow band gap energy, E-g, of 2.65 eV was obtained after annealing the modified TNTAs at 550 degrees C. Modified TNTAs showed enhanced photoelectochemical performance. Photoconversion efficiency (PCE) was increased from 4.35% for pristine (unmodified) TNTAs to 5.18% for modified TNTAs, an increase of 19%. Effect of nanotubes length of modified TNTAs on photoelectrochemical performance was also studied. Photocurrent density and PCE were increased by increasing nanotube length with a maximum PCE of 6.38% for nanotube length of 55 mu m. This high PCE value was attributed to: band gap reduction due to C- and N-modification of TNTAs surface, increased surface area of long TNTAs compared with short TNTAs, investigated in previous studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据