4.5 Article

Synthesis of Di-(2-ethylhexyl) Phosphoric Acid (D2EHPA)-Tributyl Phosphate (TBP) Impregnated Resin and Application in Adsorption of Vanadium(IV)

期刊

MINERALS
卷 8, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/min8050206

关键词

solvent-impregnated resins; vanadium; adsorption; separation; kinetics

资金

  1. National Natural Science Foundation of China [51404177]
  2. National Key Science-Technology Support Programs of China [2015BAB03B05]
  3. Fundamental Research Funds for the Central Universities [WUT: 2017II34GX]

向作者/读者索取更多资源

In order to improve the adsorption capability of solvent-impregnated resins (SIRs) for vanadium(IV) (V(IV)), the dual extractant (D2EHPA (Di-(2-ethylhexyl) phosphoric acid) and TBP (Tributyl phosphate)) impregnated resins (D-TIRs) were prepared by impregnating Amberlite(TM) XAD-16HP macroporous resins with the mixed extractant that is composed by different molar ratios of D2EHPA to TBP. The effects of the ratio of D2EHPA to TBP on the performance of D-TIRs were investigated. The results show that the impregnation ratio of the D-TIRs decreases gradually with the increasing proportion of TBP in the mixed extractant. The sole-TBP impregnated resins (TIRs) have no adsorption capability for V(IV), indicating that the adsorption of V(IV) is attributed to D2EHPA. The adsorption capacity of D-TIRs for V(IV) attained the maximum when the ratio of D2EHPA to TBP is 7:3 at pH 1.8, and it can be improved by increasing the extractants concentration during the impregnation process. Adsorption isotherm indicates that the addition of TBP can increase the adsorption capacity of D-TIRs for V(IV) from 24.65 to 29.75 mg/g after 16 h reaction. Adsorption kinetics verifies that the addition of TBP can largely accelerate the adsorption equilibrium of V(IV) onto the D-TIRs and V(IV). Electrospray ionization (ESI) mass spectra and Fourier transform infrared spectra (FT-IR) analysis indicates that the addition of TBP to D2EHPA can make some dimeric D2EHPA change to monomers by breaking the hydrogen bonds of D2EHPA-dimers, leading to the result that the pseudo-second order kinetic for the adsorption of V(IV) onto the D2EHPA impregnated resins (DIRs) converts to the pseudo-first order kinetic for that onto the D-TIRs. Also, D-TIRs have better separation capability of V(IV) from Fe(II) and Al(III) in the vanadium leaching solution than DIRs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据