4.6 Review

Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion

期刊

MATERIALS HORIZONS
卷 5, 期 3, 页码 394-407

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8mh00133b

关键词

-

资金

  1. National Natural Science Foundation of China (NSFC) [51678307]
  2. Postgraduate Research & Practice Innovation Program of Jiangsu Province [KYCX17_0394]
  3. Japan Society for Promotion of Science
  4. Australian Research Council (ARC) [FT150100479]
  5. JSPS KAKENHI [17H05393, 17K19044]

向作者/读者索取更多资源

Metal organic framework (MOF)-derived nanoporous carbons (NPCs) have been proposed as promising electrode materials for energy storage and conversion devices. However, MOF-derived NPCs typically suffer from poor electrical conductivity due to the lack of connectivity between these particles and a micropore-dominated storage mechanism, which hinder mass and electron transfer, thereby leading to poor electrochemical performance. In recent years, one-dimensional (1D) MOF-derived carbon nanostructures obtained using an electrospinning method have emerged as promising materials for both electrochemical energy storage (EES) and energy conversion applications. In this mini review, the recent progress in the development of MOF-derived 1D porous or hollow carbon nanofibers using the electrospinning method and their application in energy storage (e.g., supercapacitors and rechargeable batteries) and conversion devices (e.g., fuel cells) is presented. The synthetic method, formation mechanism and the structure-activity relationship of such porous or hollow carbon nanofibers are also discussed in detail. Finally, future perspectives on the development of electrospun MOF-derived carbon nanomaterials for energy storage and conversion applications are provided. This review will provide some guidance for future derivations of 1D hollow carbon nanomaterials from MOFs using electrospinning technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据