4.4 Article

A Mouse Model of Orthopedic Surgery to Study Postoperative Cognitive Dysfunction and Tissue Regeneration

期刊

出版社

JOURNAL OF VISUALIZED EXPERIMENTS
DOI: 10.3791/56701

关键词

Aging; behavior; cytokines; delirium; healing; mouse model; neuroinflammation; orthopedic surgery; parabiosis; postoperative cognitive dysfunction; regeneration

资金

  1. DREAM Innovation Grant from Duke Anesthesiology
  2. NIH/NIA [R01 AG057525-01]
  3. NATIONAL INSTITUTE ON AGING [R01AG057525] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Surgery is commonly used to improve and maintain quality of life. Unfortunately, in vulnerable patients such as the elderly, complications may occur and significantly diminish the outcome. Indeed, after routine orthopedic surgery to repair a fracture, as many as 50% of elderly patients suffer from neurologic complications like delirium. Also, the capacity to heal and regenerate tissue after surgery decreases with age, and can impact the quality of fracture repair and even osseous integration of implants. Thus, a better understanding of mechanisms that drive these age-dependent changes could provide strategic targets to minimize risk for such complications and optimize outcomes. Here, we introduce a clinically relevant mouse model of tibial fracture. The postoperative changes in these mice mimic some of the cognitive impairments commonly observed after routine orthopedic surgery in humans. Briefly, an incision is performed in the right hind limb under strictly aseptic conditions. Muscles are disassociated, and a 0.38-mm stainless steel pin is inserted into the upper crest of the tibia, inside the intramedullary canal. Osteotomy is then performed, and the wound is stapled. We have used this model to investigate the effects of surgical trauma on postoperative neuroinflammation and behavioral changes. By applying this fracture model in combination with parabiosis, a surgical model in which 2 mice are anastomosed, we have studied cells and secreted factors that systemically rejuvenate organ function and tissue regeneration after injury. By following our step-by-step protocol, these models can be reproduced with high fidelity, and can be adapted to interrogate many biologic pathways that are altered by surgical trauma.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据